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Coherent States of Two-Modeq-Oscillators
With a q Root of Unity

W.-S. Chung1

Whenq is a root of unity, the coherent states of two-modeq-oscillators are constructed
by introducing the generalized Grassmann variables.

1. INTRODUCTION

The theory of quantum groups (Drinfeld, 1986; Jimbo, 1985; Woronowicz,
1987) has led to the generalization (deformation) of the oscillator (boson, fermion)
algebras in several directions. The development of differential calculus in noncom-
mutative (quantized) spaces has identified multimode systems of deformed creation
and annihilation operators covariant under the actions of quantum groups (Pusz,
1989; Pusz and Woronowicz, 1989; Wess and Zumino, 1990). Generalization of
the usual boson–fermion realizations to quantized Lie algebras and superalgebras
have resulted in the study of single-mode deformed bosons (Biedenharn, 1989;
Macfarlane, 1989) and fermions (Chaichian and Kulish, 1990; Parthasarathy and
Viswanathan, 1991).

A single-modeq-oscillator with the creation (a†), annihilation (a), and num-
ber (N) operators obeying the relations

aa† − qa†a = 1, [N, a] = −a, [N, a†] = a†

has been the subject of study by some authors (Arik and Coon, 1976; Coonet al.,
1972; Kuryshkin, 1980) in the past, independent of the recent developments due
to the theory of quantum groups.

When the deformation parameterq is real, the first relation of the afore-
mentioned equation is invariant under the Hermitian conjugation. So,a† can be
interpreted as a Hermitian conjugate operator ofa. But, the situation is different
whenq is a complex number.
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In this paper, we restrict our discussion to the case thatq is a root of unity. In
this case, the first relation of the aforementioned equation is not invariant under the
Hermitian conjugation any more. Thus, we should rewrite theq-oscillator algebra
as follows:

aa+ − qa+a = 1,

wherea+ is not a Hermitain conjugate ofa. But, a anda+ play roles of lowering
and raising operators, respectively, if the following relations maintain:

[N, a+] = a+, [N, a] = −a.

In this paper, we discuss the two-modeq-oscillator system which is covariant
under some quantum groupslq(2). In the following we restrict our discussion to
the case thatq is a (s+ 1)th primitive root of unity

qs+1 = 1 or q = e
2π
s+1 i .

2. slq(2)-COVARIANT OSCILLATOR ALGEBRA

Whenq is real, quantum group covariant oscillator algebra was firstly in-
troduced by Pusz and Woronowicz (1989). They demanded theglq(n)-covariance
among step operators. Following their technique, we can write theslq(2)-covariant
two-mode oscillator algebra as follows:

a1a2 = qa2a1,

a1+a2+ = q−1a2+a1+,

a1a2+ = qa2+a1,
(1)

a2a1+ = qa1+a2,

a1a1+ − q2a1+a1 = 1,

a2a2+ − q2a2+a2 = 1+ (q2− 1)a1+a1.

Whenqs+1 = 1, from the algebra (1), we see that bothas+1
i andas+1

i+ commute
with all operators of algebra (1), which means that they are central elements of
algebra (1). So we can set

as+1
i+ = as+1

i = 0 (2)

and we have the finite-dimensional representation.
Now we will prove theslq(2)-covariance of the algebra (1) explicity. In order

to do so, we should introduce theslq(2)-matrix. Anslq(2)-matrix can be written
in the form

M =
(

a b

c d

)
,
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where the following commutation relations hold

ad− da =
(

q − 1

q

)
bc,

ab= qba, cd = qdc, (3)

ac= qca, bd = qdb,

bc= cb, detq M = ad− qbc= 1.

By the slq(2)-covariance of the system, it is meant that the linear transfor-
mations

M

(
a1

a2

)
=
(

a b

c d

)(
a1

a2

)(
a′1
a′2

)
(4)

(a1+ a2+) M−1 = (a1+ a2+)

(
d −q−1b

−qc a

)
= (a′1+ a′2+)

lead to the same commutation relations (1) for (a′1, a′1+) and (a′2, a′2+). It should be
noted that the particular coupling between the two modes is completely dictated
by the requiredslq(2)-covariance.

The Fock space representation of the algebra (1) can be easily constructed by
introducing the Hermitian number operators{N1, N2} obeying

[Ni , aj ] = −δi j aj , [Ni , aj+] = δi j aj+ (i , j = 1, 2). (5)

Let |0, 0〉 be the unique ground state of this system satisfying

Ni |0, 0〉 = 0, ai |0, 0〉 = 0 (i = 1, 2) (6)

and{|n, m〉 | n, m= 0, 1, 2,. . . , s}be the set of the orthogonal number eigenstates

N1|n, m〉 = n|n, m〉, N2|n, m〉 = m|n, m〉, 〈n, m | n′, m′〉 = δnn′δmm′ .

(7)

From the algebra (1) the representation is given by

a1|n, m〉 = √[n]|n− 1, m〉, a2|n, m〉 = qn
√

[m]|n, m− 1〉,
(8)

a1+|n, m〉 = √[n+ 1]|n+ 1, m〉, a2+|n, m〉 = qn
√

[m+ 1]|n, m+ 1〉,
where theq-number [x] is defined as

[x] = q2x − 1

q2− 1
.
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3. COHERENT STATES

The coherent state ofslq(2)-covariant oscillator algebra is defined as

a1|z1, z2〉 = z1|z1, z2〉,
(9)

a2|z1, z2〉 = z2|z1, z2〉,
So, we get

as+1
i |z1, z2〉 = zs+1

i |z1, z2〉.
We know that|z1, z2〉 6= 0 andas+1

i = 0, so we have

zs+1
1 = zs+1

2 = 0. (10)

These are generalized Grassmann variables (or (s+ 1)th nilpotent variables). In
an analogous way to an ordinary fermion system, we can assume that

z1|n, m〉 = qn|n, m〉z1,
(11)

z2|n, m〉 = qm|n, m〉z2.

From the fact that〈n, m | n, m〉 = 1 and [zi , 〈n, m | n, m〉] = 0, we have

z1〈n, m| = q−n〈n, m|z1,
(12)

z2〈n, m| = q−m〈n, m|z2.

Using the above commutation relations between number eigenstates and coherent
variables (generalized Grassmann variables), we see that

a1z1 = qz1a1,

a2z2 = qz2a2,
(13)

a1z2 = z2a1,

a2z1 = z1a2,

a1+z1 = q−1z1a1+,

a2+z2 = q−1z2a2+,
(14)

a2+z1 = z1a2+,

a1+z2 = z2a1+.

From the slq(2)-covariant oscillator algebra, the coherent variableszi ’s
and their complex conjugate variablesz∗i ’s satisfy the following commutation
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relations:

z1z2 = q−1z2z1,

z∗1z∗2 = q−1z∗2z∗1,

z1z∗2 = qz∗2z1, (15)

z2z∗1 = q−1z∗1z2,

zi z
∗
i = z∗i zi = |zi |2.

Then, |zi |2 (hermitian norm ofzi ) commute with all coherent variables, that is
to say,

[|z1|2, z2] = [|z2|2, z1] = [|z1|2, |z2|2] = 0.

If we define the generalized Grassmann integral as∫
dz∗2 dz2 dz∗1 dz1 (z∗2)nzm

2 (z∗1)pzl
1 = δnsδms, δpsδls

then there exist (s+ 1)2 coherent states

|z1, z2〉nm =
√

[s− n]![ s−m]!
s−n∑
r=0

s−m∑
p=0

(
qr (r+2n+1)+p(p+2m+1)

)−1/2

× zr+n
1 zp+m

2 |rp〉, (16)

wheren, m= 0, 1, 2,. . . , s.
Then, all coherent states{|z1, z2〉nm | n, m= 0, 1, 2,. . . , s} constitute the

complete set and they obey∫
dz∗2 dz2 dz∗1 dz1 nm〈z1, z2 | z1, z2〉n′m′ = δnn′δmm′ (17)

or

s∑
n,m=0

∫
dz∗2 dz2 dz∗1 dz1 |z1, z2〉nm nm〈z1, z2| = 1. (18)

4. CONCLUSION

In this paper, we have proposed aslq(2)-covariant oscillator algebra whenq
is a (s+ 1)th primitive root of unity and studied its representation and some basic
characteristics. Using the idea of the generalized Grassmann calculus, we obtained
a lot of coherent states ofslq(2)-covariant oscillator algebra with aq root of unity.
The results discussed in this paper can be easily extended to a more general case,
slq(n)-covariant multimode oscillator algebra.
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