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Coherent States of Two-Modeg-Oscillators
With a g Root of Unity

W.-S. Chung!

Whenq is a root of unity, the coherent states of two-magescillators are constructed
by introducing the generalized Grassmann variables.

1. INTRODUCTION

The theory of quantum groups (Drinfeld, 1986; Jimbo, 1985; Woronowicz,
1987) has led to the generalization (deformation) of the oscillator (boson, fermion)
algebras in several directions. The development of differential calculus in noncom-
mutative (quantized) spaces has identified multimode systems of deformed creation
and annihilation operators covariant under the actions of quantum groups (Pusz,
1989; Pusz and Woronowicz, 1989; Wess and Zumino, 1990). Generalization of
the usual boson—fermion realizations to quantized Lie algebras and superalgebras
have resulted in the study of single-mode deformed bosons (Biedenharn, 1989;
Macfarlane, 1989) and fermions (Chaichian and Kulish, 1990; Parthasarathy and
Viswanathan, 1991).

A single-modeg-oscillator with the creatiora(’), annihilation &), and num-
ber (N) operators obeying the relations

aa' —gqala=1, [N,a]=-a, [N,al]=a'

has been the subject of study by some authors (Arik and Coon, 1976;e6Cabn
1972; Kuryshkin, 1980) in the past, independent of the recent developments due
to the theory of quantum groups.

When the deformation parametgris real, the first relation of the afore-
mentioned equation is invariant under the Hermitian conjugationaSoan be
interpreted as a Hermitian conjugate operatoa.dBut, the situation is different
wheng is a complex number.
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In this paper, we restrict our discussion to the casegtist root of unity. In
this case, the first relation of the aforementioned equation is not invariant under the
Hermitian conjugation any more. Thus, we should rewritegttuscillator algebra
as follows:

aa; —qaja=1,
wherea, is not a Hermitain conjugate ef But,a anda, play roles of lowering
and raising operators, respectively, if the following relations maintain:
[N,a+]=a+, [N7a]:_a'

In this paper, we discuss the two-maglescillator system which is covariant
under some quantum growy(2). In the following we restrict our discussion to
the case that is a (s + 1)th primitive root of unity

2 ;
g*l=1 or gq=es1'.

2. sl4(2)-COVARIANT OSCILLATOR ALGEBRA

Whenq is real, quantum group covariant oscillator algebra was firstly in-
troduced by Pusz and Woronowicz (1989). They demandedlglte)-covariance
among step operators. Following their technique, we can writsl§(®)-covariant
two-mode oscillator algebra as follows:

1 = (apay,
a1 8y = q agiau,
Qa2 = (& ay,
A = a4+,

2
ya — Qe =1,

(1)

A — QA a = 1+ (9° — 1)ag,ay.

Whengs*! = 1, from the algebra (1), we see that bafii* anda’ ™ commute
with all operators of algebra (1), which means that they are central elements of
algebra (1). So we can set

aisil — aiS+l — O (2)

and we have the finite-dimensional representation.
Now we will prove thesl,(2)-covariance of the algebra (1) explicity. In order
to do so, we should introduce tis& (2)-matrix. Ansly(2)-matrix can be written

in the form
a b
M =
(¢ a)
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where the following commutation relations hold

ad—da= (q — E>bc,
q

ab = gba, cd =qdc 3)
ac = qca, bd = qdb,
bc=ch, detM=ad-qgbc=1

By the sly(2)-covariance of the system, it is meant that the linear transfor-

mations
dp c d a a,

d —-qgb
—gqc  a

(4)

(s 3 ) Mt = (anr az4) (

> = (a; &%)

lead to the same commutation relations (1) fr &, ) and @, a,_ ). It should be
noted that the particular coupling between the two modes is completely dictated
by the requiredly(2)-covariance.

The Fock space representation of the algebra (1) can be easily constructed by
introducing the Hermitian number operat¢hé;, N>} obeying

[Ni,aj] = =dija;, [N, a4l =djaj+ (@(,j=1,2) (5)
Let |0, 0) be the unigue ground state of this system satisfying
Nil0,00 =0, &l0,0=0 (=12 (6)
and{ln,m) | n,m=0,1, 2,..., s}bethe setofthe orthogonal number eigenstates
Nz|n, m) = n|n, m), N2|n, m) = m|n, m), (n,m|n',m) = 8yémm-
)
From the algebra (1) the representation is given by
ai|n, m) = V/[n]|n — 1, m), a|n, m) = q"/[m]|n, m — 1),
arpIn, m) = /[n+1]|n + 1, m), apIn, m) = q"v[m+1]|n, m + 1),

where theg-number k] is defined as

(8)

q2x_1
Q-1

[x] =
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3. COHERENT STATES

The coherent state sf,(2)-covariant oscillator algebra is defined as

1|21, ) = 71|21, 2o),

&|21, ) = 23|71, o), ©
So, we get
a’ 21, 2) = 21, 22).
We know thatz;, z,) # 0 anda®™* = 0, so we have
gt =z" =0 (10)

These are generalized Grassmann variabless(éri)th nilpotent variables). In
an analogous way to an ordinary fermion system, we can assume that

z1in,m) = q"|n, m)zy,

(11)
2In, m) = q"n, M)z,
From the fact thatn, m | n,m) = 1 and [, (n, m | n, m)] = 0, we have
zi(n, m| = q~"(n, M|z,
1 1 (12)
z(n, m| = g~™(n, m|z.

Using the above commutation relations between number eigenstates and coherent
variables (generalized Grassmann variables), we see that

1z = Q4a,,
2y = (Q%ay, 13
7 = 2748y, 43
27y = 718y,
a2 =q ‘z1a4,
a2 = q 'zap,,
(14)

A7) = Z1dy,
122 = oAy,

From the sly(2)-covariant oscillator algebra, the coherent varialdgs
and their complex conjugate variablgsSs satisfy the following commutation
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relations:

212, = q 2z,

7% =q '3z,

2z, = qZyz1, (15)

7 = q 'z 2,

27 =7z = |z
Then, |z | (hermitian norm ofz) commute with all coherent variables, that is
to say,

[1z% 2] = [Iz2%, z2] = [|z2/%, 122/*] = 0.

If we define the generalized Grassmann integral as
/ dz dz dZ dz (2)"23(Z5)PZ, = Snsdms, Spsdis

then there exists(+ 1)? coherent states

S—N s—m

121, Z2)nm = V[S— n]i[s — m]! Z Z (qf(f+2n+1)+p(p+2m+1))—1/2

r=0 p=0
x 2725 " rp), (16)

wherennm=20,1,2,...,s.
Then, all coherent stat€s$zy, zo)nm | N, M =0, 1, 2,..., s} constitute the
complete set and they obey

/ 42 d2 dZ dz1 nn(z1, 22 | 21, Z2)wew = Sy Sonme (17)
or
S
Z /dz; dz dZ dz |z, Zo)am nm{Z1, 22| = 1. (18)
n,m=0

4. CONCLUSION

In this paper, we have proposed|g(2)-covariant oscillator algebra when
is a (s + 1)th primitive root of unity and studied its representation and some basic
characteristics. Using the idea of the generalized Grassmann calculus, we obtained
alot of coherent states ef;(2)-covariant oscillator algebra withgproot of unity.
The results discussed in this paper can be easily extended to a more general case,
sly(n)-covariant multimode oscillator algebra.
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